# Author: Raphael Vallat <raphaelvallat9@gmail.com>
# Date: April 2018
import numpy as np
import pandas as pd
import pandas_flavor as pf
from itertools import combinations, product
from pingouin.config import options
from pingouin.parametric import anova
from pingouin.multicomp import multicomp
from pingouin.effsize import compute_effsize
from pingouin.utils import _check_dataframe, _flatten_list, _postprocess_dataframe
from scipy.stats import studentized_range
import warnings
__all__ = [
"pairwise_ttests",
"pairwise_tests",
"ptests",
"pairwise_tukey",
"pairwise_gameshowell",
"pairwise_corr",
]
@pf.register_dataframe_method
def pairwise_ttests(*args, **kwargs):
"""This function has been deprecated . Use :py:func:`pingouin.pairwise_tests` instead."""
warnings.warn("pairwise_ttests is deprecated, use pairwise_tests instead.", UserWarning)
return pairwise_tests(*args, **kwargs)
[docs]
@pf.register_dataframe_method
def pairwise_tests(
data=None,
dv=None,
between=None,
within=None,
subject=None,
parametric=True,
marginal=True,
alpha=0.05,
alternative="two-sided",
padjust="none",
effsize="hedges",
correction="auto",
nan_policy="listwise",
return_desc=False,
interaction=True,
within_first=True,
):
"""Pairwise tests.
Parameters
----------
data : :py:class:`pandas.DataFrame`
DataFrame. Note that this function can also directly be used as a
Pandas method, in which case this argument is no longer needed.
dv : string
Name of column containing the dependent variable.
between : string or list with 2 elements
Name of column(s) containing the between-subject factor(s).
within : string or list with 2 elements
Name of column(s) containing the within-subject factor(s), i.e. the
repeated measurements.
subject : string
Name of column containing the subject identifier. This is mandatory
when ``within`` is specified.
parametric : boolean
If True (default), use the parametric :py:func:`ttest` function.
If False, use :py:func:`pingouin.wilcoxon` or :py:func:`pingouin.mwu`
for paired or unpaired samples, respectively.
marginal : boolean
If True (default), the between-subject pairwise T-test(s) will be calculated
after averaging across all levels of the within-subject factor in mixed
design. This is recommended to avoid violating the assumption of
independence and conflating the degrees of freedom by the
number of repeated measurements.
.. versionadded:: 0.3.2
alpha : float
Significance level
alternative : string
Defines the alternative hypothesis, or tail of the test. Must be one of
"two-sided" (default), "greater" or "less". Both "greater" and "less" return one-sided
p-values. "greater" tests against the alternative hypothesis that the mean of ``x``
is greater than the mean of ``y``.
padjust : string
Method used for testing and adjustment of pvalues.
* ``'none'``: no correction
* ``'bonf'``: one-step Bonferroni correction
* ``'sidak'``: one-step Sidak correction
* ``'holm'``: step-down method using Bonferroni adjustments
* ``'fdr_bh'``: Benjamini/Hochberg FDR correction
* ``'fdr_by'``: Benjamini/Yekutieli FDR correction
effsize : string or None
Effect size type. Available methods are:
* ``'none'``: no effect size
* ``'cohen'``: Unbiased Cohen d
* ``'hedges'``: Hedges g
* ``'r'``: Pearson correlation coefficient
* ``'eta-square'``: Eta-square
* ``'odds-ratio'``: Odds ratio
* ``'AUC'``: Area Under the Curve
* ``'CLES'``: Common Language Effect Size
correction : string or boolean
For independent two sample T-tests, specify whether or not to correct for
unequal variances using Welch separate variances T-test. If `'auto'`,
it will automatically uses Welch T-test when the sample sizes are
unequal, as recommended by Zimmerman 2004.
.. versionadded:: 0.3.2
nan_policy : string
Can be `'listwise'` for listwise deletion of missing values in repeated
measures design (= complete-case analysis) or `'pairwise'` for the
more liberal pairwise deletion (= available-case analysis). The former (default) is more
appropriate for post-hoc analysis following an ANOVA, however it can drastically reduce
the power of the test: any subject with one or more missing value(s) will be
completely removed from the analysis.
.. versionadded:: 0.2.9
return_desc : boolean
If True, append group means and std to the output dataframe
interaction : boolean
If there are multiple factors and ``interaction`` is True (default),
Pingouin will also calculate T-tests for the interaction term (see Notes).
.. versionadded:: 0.2.9
within_first : boolean
Determines the order of the interaction in mixed design. Pingouin will
return within * between when this parameter is set to True (default),
and between * within otherwise.
.. versionadded:: 0.3.6
Returns
-------
stats : :py:class:`pandas.DataFrame`
* ``'Contrast'``: Contrast (= independent variable or interaction)
* ``'A'``: Name of first measurement
* ``'B'``: Name of second measurement
* ``'Paired'``: indicates whether the two measurements are paired or
independent
* ``'Parametric'``: indicates if (non)-parametric tests were used
* ``'T'``: T statistic (only if parametric=True)
* ``'U-val'``: Mann-Whitney U stat (if parametric=False and unpaired
data)
* ``'W-val'``: Wilcoxon W stat (if parametric=False and paired data)
* ``'dof'``: degrees of freedom (only if parametric=True)
* ``'alternative'``: tail of the test
* ``'p-unc'``: Uncorrected p-values
* ``'p-corr'``: Corrected p-values
* ``'p-adjust'``: p-values correction method
* ``'BF10'``: Bayes Factor
* ``'hedges'``: effect size (or any effect size defined in
``effsize``)
See also
--------
ttest, mwu, wilcoxon, compute_effsize, multicomp
Notes
-----
Data are expected to be in long-format. If your data is in wide-format,
you can use the :py:func:`pandas.melt` function to convert from wide to
long format.
If ``between`` or ``within`` is a list (e.g. ['col1', 'col2']),
the function returns 1) the pairwise T-tests between each values of the
first column, 2) the pairwise T-tests between each values of the second
column and 3) the interaction between col1 and col2. The interaction is
dependent of the order of the list, so ['col1', 'col2'] will not yield the
same results as ['col2', 'col1']. Furthermore, the interaction will only be
calculated if ``interaction=True``.
If ``between`` is a list with two elements, the output
model is between1 + between2 + between1 * between2.
Similarly, if ``within`` is a list with two elements, the output model is
within1 + within2 + within1 * within2.
If both ``between`` and ``within`` are specified, the output model is
within + between + within * between (= mixed design), unless
``within_first=False`` in which case the model becomes between + within +
between * within.
Missing values in repeated measurements are automatically removed using a
listwise (default) or pairwise deletion strategy. The former is more conservative, as any
subject with one or more missing value(s) will be completely removed from the dataframe prior
to calculating the T-tests. The ``nan_policy`` parameter can therefore have a huge impact
on the results.
Examples
--------
For more examples, please refer to the `Jupyter notebooks
<https://github.com/raphaelvallat/pingouin/blob/master/notebooks/01_ANOVA.ipynb>`_
1. One between-subject factor
>>> import pandas as pd
>>> import pingouin as pg
>>> pd.set_option('display.expand_frame_repr', False)
>>> pd.set_option('display.max_columns', 20)
>>> df = pg.read_dataset('mixed_anova.csv')
>>> pg.pairwise_tests(dv='Scores', between='Group', data=df).round(3)
Contrast A B Paired Parametric T dof alternative p-unc BF10 hedges
0 Group Control Meditation False True -2.29 178.0 two-sided 0.023 1.813 -0.34
2. One within-subject factor
>>> post_hocs = pg.pairwise_tests(dv='Scores', within='Time', subject='Subject', data=df)
>>> post_hocs.round(3)
Contrast A B Paired Parametric T dof alternative p-unc BF10 hedges
0 Time August January True True -1.740 59.0 two-sided 0.087 0.582 -0.328
1 Time August June True True -2.743 59.0 two-sided 0.008 4.232 -0.483
2 Time January June True True -1.024 59.0 two-sided 0.310 0.232 -0.170
3. Non-parametric pairwise paired test (wilcoxon)
>>> pg.pairwise_tests(dv='Scores', within='Time', subject='Subject',
... data=df, parametric=False).round(3)
Contrast A B Paired Parametric W-val alternative p-unc hedges
0 Time August January True False 716.0 two-sided 0.144 -0.328
1 Time August June True False 564.0 two-sided 0.010 -0.483
2 Time January June True False 887.0 two-sided 0.840 -0.170
4. Mixed design (within and between) with bonferroni-corrected p-values
>>> posthocs = pg.pairwise_tests(dv='Scores', within='Time', subject='Subject',
... between='Group', padjust='bonf', data=df)
>>> posthocs.round(3)
Contrast Time A B Paired Parametric T dof alternative p-unc p-corr p-adjust BF10 hedges
0 Time - August January True True -1.740 59.0 two-sided 0.087 0.261 bonf 0.582 -0.328
1 Time - August June True True -2.743 59.0 two-sided 0.008 0.024 bonf 4.232 -0.483
2 Time - January June True True -1.024 59.0 two-sided 0.310 0.931 bonf 0.232 -0.170
3 Group - Control Meditation False True -2.248 58.0 two-sided 0.028 NaN NaN 2.096 -0.573
4 Time * Group August Control Meditation False True 0.316 58.0 two-sided 0.753 1.000 bonf 0.274 0.081
5 Time * Group January Control Meditation False True -1.434 58.0 two-sided 0.157 0.471 bonf 0.619 -0.365
6 Time * Group June Control Meditation False True -2.744 58.0 two-sided 0.008 0.024 bonf 5.593 -0.699
5. Two between-subject factors. The order of the ``between`` factors matters!
>>> pg.pairwise_tests(dv='Scores', between=['Group', 'Time'], data=df).round(3)
Contrast Group A B Paired Parametric T dof alternative p-unc BF10 hedges
0 Group - Control Meditation False True -2.290 178.0 two-sided 0.023 1.813 -0.340
1 Time - August January False True -1.806 118.0 two-sided 0.074 0.839 -0.328
2 Time - August June False True -2.660 118.0 two-sided 0.009 4.499 -0.483
3 Time - January June False True -0.934 118.0 two-sided 0.352 0.288 -0.170
4 Group * Time Control August January False True -0.383 58.0 two-sided 0.703 0.279 -0.098
5 Group * Time Control August June False True -0.292 58.0 two-sided 0.771 0.272 -0.074
6 Group * Time Control January June False True 0.045 58.0 two-sided 0.964 0.263 0.011
7 Group * Time Meditation August January False True -2.188 58.0 two-sided 0.033 1.884 -0.558
8 Group * Time Meditation August June False True -4.040 58.0 two-sided 0.000 148.302 -1.030
9 Group * Time Meditation January June False True -1.442 58.0 two-sided 0.155 0.625 -0.367
6. Same but without the interaction, and using a directional test
>>> df.pairwise_tests(dv='Scores', between=['Group', 'Time'], alternative="less",
... interaction=False).round(3)
Contrast A B Paired Parametric T dof alternative p-unc BF10 hedges
0 Group Control Meditation False True -2.290 178.0 less 0.012 3.626 -0.340
1 Time August January False True -1.806 118.0 less 0.037 1.679 -0.328
2 Time August June False True -2.660 118.0 less 0.004 8.998 -0.483
3 Time January June False True -0.934 118.0 less 0.176 0.577 -0.170
"""
from .parametric import ttest
from .nonparametric import wilcoxon, mwu
# Safety checks
data = _check_dataframe(
dv=dv, between=between, within=within, subject=subject, effects="all", data=data
)
assert alternative in [
"two-sided",
"greater",
"less",
], "Alternative must be one of 'two-sided' (default), 'greater' or 'less'."
assert isinstance(alpha, float), "alpha must be float."
assert nan_policy in ["listwise", "pairwise"]
# Check if we have multiple between or within factors
multiple_between = False
multiple_within = False
contrast = None
if isinstance(between, list):
if len(between) > 1:
multiple_between = True
contrast = "multiple_between"
assert all([b in data.keys() for b in between])
else:
between = between[0]
if isinstance(within, list):
if len(within) > 1:
multiple_within = True
contrast = "multiple_within"
assert all([w in data.keys() for w in within])
else:
within = within[0]
if all([multiple_within, multiple_between]):
raise ValueError(
"Multiple between and within factors are currently not supported. "
"Please select only one."
)
# Check the other cases. Between and within column names can be str or int (not float).
if isinstance(between, (str, int)) and within is None:
contrast = "simple_between"
assert between in data.keys()
if isinstance(within, (str, int)) and between is None:
contrast = "simple_within"
assert within in data.keys()
if isinstance(between, (str, int)) and isinstance(within, (str, int)):
contrast = "within_between"
assert all([between in data.keys(), within in data.keys()])
# Create col_order
col_order = [
"Contrast",
"Time",
"A",
"B",
"mean(A)",
"std(A)",
"mean(B)",
"std(B)",
"Paired",
"Parametric",
"T",
"U-val",
"W-val",
"dof",
"alternative",
"p-unc",
"p-corr",
"p-adjust",
"BF10",
effsize,
]
# If repeated measures, pivot and melt the table. This has several effects:
# 1) Force missing values to be explicit (a NaN cell is created)
# 2) Automatic collapsing to the mean if multiple within factors are present
# 3) If using dropna, remove rows with missing values (listwise deletion).
# The latter is the same behavior as JASP (= strict complete-case analysis).
if within is not None:
idx_piv = subject if between is None else [subject, between]
data_piv = data.pivot_table(index=idx_piv, columns=within, values=dv, observed=True)
if nan_policy == "listwise":
# Remove rows (= subject) with missing values. For pairwise deletion, missing values
# will be removed directly in the lower-level functions (e.g. pg.ttest)
data_piv = data_piv.dropna()
data = data_piv.melt(ignore_index=False, value_name=dv).reset_index()
if contrast in ["simple_within", "simple_between"]:
# OPTION A: SIMPLE MAIN EFFECTS, WITHIN OR BETWEEN
paired = True if contrast == "simple_within" else False
col = within if contrast == "simple_within" else between
# Extract levels of the grouping variable, sorted in alphabetical order
grp_col = data.groupby(col, sort=True, observed=True)[dv]
labels = grp_col.groups.keys()
# Number and labels of possible comparisons
if len(labels) >= 2:
combs = list(combinations(labels, 2))
combs = np.array(combs)
A = combs[:, 0]
B = combs[:, 1]
else:
raise ValueError("Columns must have at least two unique values.")
# Initialize dataframe
stats = pd.DataFrame(dtype=np.float64, index=range(len(combs)), columns=col_order)
# Force dtype conversion
cols_str = ["Contrast", "Time", "A", "B", "alternative", "p-adjust", "BF10"]
cols_bool = ["Parametric", "Paired"]
stats[cols_str] = stats[cols_str].astype(object)
stats[cols_bool] = stats[cols_bool].astype(bool)
# Fill str columns
stats.loc[:, "A"] = A
stats.loc[:, "B"] = B
stats.loc[:, "Contrast"] = col
stats.loc[:, "alternative"] = alternative
stats.loc[:, "Paired"] = paired
# For max precision, make sure rounding is disabled
old_options = options.copy()
options["round"] = None
for i in range(stats.shape[0]):
col1, col2 = stats.at[i, "A"], stats.at[i, "B"]
x = grp_col.get_group(col1).to_numpy(dtype=np.float64)
y = grp_col.get_group(col2).to_numpy(dtype=np.float64)
if parametric:
stat_name = "T"
df_ttest = ttest(
x, y, paired=paired, alternative=alternative, correction=correction
)
stats.at[i, "BF10"] = df_ttest.at["T-test", "BF10"]
stats.at[i, "dof"] = df_ttest.at["T-test", "dof"]
else:
if paired:
stat_name = "W-val"
df_ttest = wilcoxon(x, y, alternative=alternative)
else:
stat_name = "U-val"
df_ttest = mwu(x, y, alternative=alternative)
options.update(old_options) # restore options
# Compute Hedges / Cohen
ef = compute_effsize(x=x, y=y, eftype=effsize, paired=paired)
if return_desc:
stats.at[i, "mean(A)"] = np.nanmean(x)
stats.at[i, "mean(B)"] = np.nanmean(y)
stats.at[i, "std(A)"] = np.nanstd(x, ddof=1)
stats.at[i, "std(B)"] = np.nanstd(y, ddof=1)
stats.at[i, stat_name] = df_ttest[stat_name].iat[0]
stats.at[i, "p-unc"] = df_ttest["p-val"].iat[0]
stats.at[i, effsize] = ef
# Multiple comparisons
padjust = None if stats["p-unc"].size <= 1 else padjust
if padjust is not None:
if padjust.lower() != "none":
_, stats["p-corr"] = multicomp(
stats["p-unc"].to_numpy(), alpha=alpha, method=padjust
)
stats["p-adjust"] = padjust
else:
stats["p-corr"] = None
stats["p-adjust"] = None
else:
# Multiple factors
if contrast == "multiple_between":
# B1: BETWEEN1 + BETWEEN2 + BETWEEN1 * BETWEEN2
factors = between
fbt = factors
fwt = [None, None]
paired = False # the interaction is not paired
agg = [False, False]
# TODO: add a pool SD option, as in JASP and JAMOVI?
elif contrast == "multiple_within":
# B2: WITHIN1 + WITHIN2 + WITHIN1 * WITHIN2
factors = within
fbt = [None, None]
fwt = factors
paired = True
agg = [True, True] # Calculate marginal means for both factors
else:
# B3: WITHIN + BETWEEN + INTERACTION
# Decide which order should be reported
if within_first:
# within + between + within * between
factors = [within, between]
fbt = [None, between]
fwt = [within, None]
paired = False # only for interaction
agg = [False, True]
else:
# between + within + between * within
factors = [between, within]
fbt = [between, None]
fwt = [None, within]
paired = True
agg = [True, False]
stats = pd.DataFrame()
for i, f in enumerate(factors):
# Introduced in Pingouin v0.3.2
# Note that is only has an impact in the between test of mixed
# designs. Indeed, a similar groupby is applied by default on
# each within-subject factor of a two-way repeated measures design.
if all([agg[i], marginal]):
tmp = data.groupby([subject, f], as_index=False, observed=True, sort=True).mean(
numeric_only=True
)
else:
tmp = data
pt = pairwise_tests(
dv=dv,
between=fbt[i],
within=fwt[i],
subject=subject,
data=tmp,
parametric=parametric,
marginal=marginal,
alpha=alpha,
alternative=alternative,
padjust=padjust,
effsize=effsize,
correction=correction,
nan_policy=nan_policy,
return_desc=return_desc,
)
stats = pd.concat([stats, pt], axis=0, ignore_index=True, sort=False)
# Then compute the interaction between the factors
if interaction:
nrows = stats.shape[0]
# BUGFIX 0.3.9: If subject is present, make sure that we respect
# the order of subjects.
if subject is not None:
data = data.set_index(subject).sort_index()
# Extract interaction levels, sorted in alphabetical order
grp_fac1 = data.groupby(factors[0], observed=True, sort=True)[dv]
grp_fac2 = data.groupby(factors[1], observed=True, sort=True)[dv]
grp_both = data.groupby(factors, observed=True, sort=True)[dv]
labels_fac1 = grp_fac1.groups.keys()
labels_fac2 = grp_fac2.groups.keys()
# comb_fac1 = list(combinations(labels_fac1, 2))
comb_fac2 = list(combinations(labels_fac2, 2))
# Pairwise comparisons
combs_list = list(product(labels_fac1, comb_fac2))
ncombs = len(combs_list)
# np.array(combs_list) does not work because of tuples
# we therefore need to flatten the tupple
combs = np.zeros(shape=(ncombs, 3), dtype=object)
for i in range(ncombs):
combs[i] = _flatten_list(combs_list[i], include_tuple=True)
# Append empty rows
idxiter = np.arange(nrows, nrows + ncombs)
stats = stats.reindex(stats.index.union(idxiter))
# Update other columns
stats.loc[idxiter, "Contrast"] = factors[0] + " * " + factors[1]
stats.loc[idxiter, "Time"] = combs[:, 0]
stats.loc[idxiter, "Paired"] = paired
stats.loc[idxiter, "alternative"] = alternative
stats.loc[idxiter, "A"] = combs[:, 1]
stats.loc[idxiter, "B"] = combs[:, 2]
# For max precision, make sure rounding is disabled
old_options = options.copy()
options["round"] = None
for i, comb in enumerate(combs):
ic = nrows + i # Take into account previous rows
fac1, col1, col2 = comb
x = grp_both.get_group((fac1, col1)).to_numpy(dtype=np.float64)
y = grp_both.get_group((fac1, col2)).to_numpy(dtype=np.float64)
ef = compute_effsize(x=x, y=y, eftype=effsize, paired=paired)
if parametric:
stat_name = "T"
df_ttest = ttest(
x, y, paired=paired, alternative=alternative, correction=correction
)
stats.at[ic, "BF10"] = df_ttest.at["T-test", "BF10"]
stats.at[ic, "dof"] = df_ttest.at["T-test", "dof"]
else:
if paired:
stat_name = "W-val"
df_ttest = wilcoxon(x, y, alternative=alternative)
else:
stat_name = "U-val"
df_ttest = mwu(x, y, alternative=alternative)
options.update(old_options) # restore options
# Append to stats
if return_desc:
stats.at[ic, "mean(A)"] = np.nanmean(x)
stats.at[ic, "mean(B)"] = np.nanmean(y)
stats.at[ic, "std(A)"] = np.nanstd(x, ddof=1)
stats.at[ic, "std(B)"] = np.nanstd(y, ddof=1)
stats.at[ic, stat_name] = df_ttest[stat_name].iat[0]
stats.at[ic, "p-unc"] = df_ttest["p-val"].iat[0]
stats.at[ic, effsize] = ef
# Multi-comparison columns
if padjust is not None and padjust.lower() != "none":
_, pcor = multicomp(
stats.loc[idxiter, "p-unc"].to_numpy(), alpha=alpha, method=padjust
)
stats.loc[idxiter, "p-corr"] = pcor
stats.loc[idxiter, "p-adjust"] = padjust
# ---------------------------------------------------------------------
# Append parametric columns
stats.loc[:, "Parametric"] = parametric
# Reorder and drop empty columns
stats = stats[np.array(col_order)[np.isin(col_order, stats.columns)]]
stats = stats.dropna(how="all", axis=1)
# Rename Time columns
if contrast in ["multiple_within", "multiple_between", "within_between"] and interaction:
stats["Time"] = stats["Time"].fillna("-")
stats = stats.rename(columns={"Time": factors[0]})
return _postprocess_dataframe(stats)
[docs]
@pf.register_dataframe_method
def ptests(
self,
paired=False,
decimals=3,
padjust=None,
stars=True,
pval_stars={0.001: "***", 0.01: "**", 0.05: "*"},
**kwargs,
):
"""
Pairwise T-test between columns of a dataframe.
T-values are reported on the lower triangle of the output pairwise matrix and p-values on the
upper triangle. This method is a faster, but less exhaustive, matrix-version of the
:py:func:`pingouin.pairwise_test` function. Missing values are automatically removed from each
pairwise T-test.
.. versionadded:: 0.5.3
Parameters
----------
self : :py:class:`pandas.DataFrame`
Input dataframe.
paired : boolean
Specify whether the two observations are related (i.e. repeated measures) or independent.
decimals : int
Number of decimals to display in the output matrix.
padjust : string or None
P-values adjustment for multiple comparison
* ``'none'``: no correction
* ``'bonf'``: one-step Bonferroni correction
* ``'sidak'``: one-step Sidak correction
* ``'holm'``: step-down method using Bonferroni adjustments
* ``'fdr_bh'``: Benjamini/Hochberg FDR correction
* ``'fdr_by'``: Benjamini/Yekutieli FDR correction
stars : boolean
If True, only significant p-values are displayed as stars using the pre-defined thresholds
of ``pval_stars``. If False, all the raw p-values are displayed.
pval_stars : dict
Significance thresholds. Default is 3 stars for p-values <0.001, 2 stars for
p-values <0.01 and 1 star for p-values <0.05.
**kwargs : optional
Optional argument(s) passed to the lower-level scipy functions, i.e.
:py:func:`scipy.stats.ttest_ind` for independent T-test and
:py:func:`scipy.stats.ttest_rel` for paired T-test.
Returns
-------
mat : :py:class:`pandas.DataFrame`
Pairwise T-test matrix, of dtype str, with T-values on the lower triangle and p-values on
the upper triangle.
Examples
--------
>>> import numpy as np
>>> import pandas as pd
>>> import pingouin as pg
>>> # Load an example dataset of personality dimensions
>>> df = pg.read_dataset('pairwise_corr').iloc[:30, 1:]
>>> df.columns = ["N", "E", "O", 'A', "C"]
>>> # Add some missing values
>>> df.iloc[[2, 5, 20], 2] = np.nan
>>> df.iloc[[1, 4, 10], 3] = np.nan
>>> df.head().round(2)
N E O A C
0 2.48 4.21 3.94 3.96 3.46
1 2.60 3.19 3.96 NaN 3.23
2 2.81 2.90 NaN 2.75 3.50
3 2.90 3.56 3.52 3.17 2.79
4 3.02 3.33 4.02 NaN 2.85
Independent pairwise T-tests
>>> df.ptests()
N E O A C
N - *** *** *** ***
E -8.397 - ***
O -8.332 -0.596 - ***
A -8.804 0.12 0.72 - ***
C -4.759 3.753 4.074 3.787 -
Let's compare with SciPy
>>> from scipy.stats import ttest_ind
>>> np.round(ttest_ind(df["N"], df["E"]), 3)
array([-8.397, 0. ])
Passing custom parameters to the lower-level :py:func:`scipy.stats.ttest_ind` function
>>> df.ptests(alternative="greater", equal_var=True)
N E O A C
N -
E -8.397 - ***
O -8.332 -0.596 - ***
A -8.804 0.12 0.72 - ***
C -4.759 3.753 4.074 3.787 -
Paired T-test, showing the actual p-values instead of stars
>>> df.ptests(paired=True, stars=False, decimals=4)
N E O A C
N - 0.0000 0.0000 0.0000 0.0002
E -7.0773 - 0.8776 0.7522 0.0012
O -8.0568 -0.1555 - 0.8137 0.0008
A -8.3994 0.3191 0.2383 - 0.0009
C -4.2511 3.5953 3.7849 3.7652 -
Adjusting for multiple comparisons using the Holm-Bonferroni method
>>> df.ptests(paired=True, stars=False, padjust="holm")
N E O A C
N - 0.000 0.000 0.000 0.001
E -7.077 - 1. 1. 0.005
O -8.057 -0.155 - 1. 0.005
A -8.399 0.319 0.238 - 0.005
C -4.251 3.595 3.785 3.765 -
"""
from itertools import combinations
from numpy import triu_indices_from as tif
from numpy import format_float_positional as ffp
from scipy.stats import ttest_ind, ttest_rel
assert isinstance(pval_stars, dict), "pval_stars must be a dictionary."
assert isinstance(decimals, int), "decimals must be an int."
if paired:
func = ttest_rel
else:
func = ttest_ind
# Get T-values and p-values
# We cannot use pandas.DataFrame.corr here because it will incorrectly remove rows missing
# values, even when using an independent T-test!
cols = self.columns
combs = list(combinations(cols, 2))
mat = pd.DataFrame(columns=cols, index=cols, dtype=np.float64)
mat_upper = mat.copy()
for a, b in combs:
t, p = func(self[a], self[b], **kwargs, nan_policy="omit")
mat.loc[b, a] = np.round(t, decimals)
# Do not round p-value here, or we'll lose precision for multicomp
mat_upper.loc[a, b] = p
if padjust is not None:
pvals = mat_upper.to_numpy()[tif(mat, k=1)]
mat_upper.to_numpy()[tif(mat, k=1)] = multicomp(pvals, alpha=0.05, method=padjust)[1]
# Convert T-values to str, and fill the diagonal with "-"
mat = mat.astype(str)
np.fill_diagonal(mat.to_numpy(), "-")
def replace_pval(x):
for key, value in pval_stars.items():
if x < key:
return value
return ""
if stars:
# Replace p-values by stars
mat_upper = mat_upper.map(replace_pval)
else:
mat_upper = mat_upper.map(lambda x: ffp(x, precision=decimals))
# Replace upper triangle by p-values
mat.to_numpy()[tif(mat, k=1)] = mat_upper.to_numpy()[tif(mat, k=1)]
return mat
[docs]
@pf.register_dataframe_method
def pairwise_tukey(data=None, dv=None, between=None, effsize="hedges"):
"""Pairwise Tukey-HSD post-hoc test.
Parameters
----------
data : :py:class:`pandas.DataFrame`
DataFrame. Note that this function can also directly be used as a Pandas method, in which
case this argument is no longer needed.
dv : string
Name of column containing the dependent variable.
between: string
Name of column containing the between factor.
effsize : string or None
Effect size type. Available methods are:
* ``'none'``: no effect size
* ``'cohen'``: Unbiased Cohen d
* ``'hedges'``: Hedges g
* ``'r'``: Pearson correlation coefficient
* ``'eta-square'``: Eta-square
* ``'odds-ratio'``: Odds ratio
* ``'AUC'``: Area Under the Curve
* ``'CLES'``: Common Language Effect Size
Returns
-------
stats : :py:class:`pandas.DataFrame`
* ``'A'``: Name of first measurement
* ``'B'``: Name of second measurement
* ``'mean(A)'``: Mean of first measurement
* ``'mean(B)'``: Mean of second measurement
* ``'diff'``: Mean difference (= mean(A) - mean(B))
* ``'se'``: Standard error
* ``'T'``: T-values
* ``'p-tukey'``: Tukey-HSD corrected p-values
* ``'hedges'``: Hedges effect size (or any effect size defined in
``effsize``)
See also
--------
pairwise_tests, pairwise_gameshowell
Notes
-----
Tukey HSD post-hoc [1]_ is best for balanced one-way ANOVA.
It has been proven to be conservative for one-way ANOVA with unequal sample sizes. However, it
is not robust if the groups have unequal variances, in which case the Games-Howell test is
more adequate. Tukey HSD is not valid for repeated measures ANOVA. Only one-way ANOVA design
are supported.
The T-values are defined as:
.. math::
t = \\frac{\\overline{x}_i - \\overline{x}_j}
{\\sqrt{2 \\cdot \\text{MS}_w / n}}
where :math:`\\overline{x}_i` and :math:`\\overline{x}_j` are the means of the first and
second group, respectively, :math:`\\text{MS}_w` the mean squares of the error (computed using
ANOVA) and :math:`n` the sample size.
If the sample sizes are unequal, the Tukey-Kramer procedure is automatically used:
.. math::
t = \\frac{\\overline{x}_i - \\overline{x}_j}{\\sqrt{\\frac{MS_w}{n_i}
+ \\frac{\\text{MS}_w}{n_j}}}
where :math:`n_i` and :math:`n_j` are the sample sizes of the first and second group,
respectively.
The p-values are then approximated using the Studentized range distribution
:math:`Q(\\sqrt2|t_i|, r, N - r)` where :math:`r` is the total number of groups and
:math:`N` is the total sample size.
References
----------
.. [1] Tukey, John W. "Comparing individual means in the analysis of
variance." Biometrics (1949): 99-114.
.. [2] Gleason, John R. "An accurate, non-iterative approximation for
studentized range quantiles." Computational statistics & data
analysis 31.2 (1999): 147-158.
Examples
--------
Pairwise Tukey post-hocs on the Penguins dataset.
>>> import pingouin as pg
>>> df = pg.read_dataset('penguins')
>>> df.pairwise_tukey(dv='body_mass_g', between='species').round(3)
A B mean(A) mean(B) diff se T p-tukey hedges
0 Adelie Chinstrap 3700.662 3733.088 -32.426 67.512 -0.480 0.881 -0.074
1 Adelie Gentoo 3700.662 5076.016 -1375.354 56.148 -24.495 0.000 -2.860
2 Chinstrap Gentoo 3733.088 5076.016 -1342.928 69.857 -19.224 0.000 -2.875
"""
# First compute the ANOVA
# For max precision, make sure rounding is disabled
old_options = options.copy()
options["round"] = None
aov = anova(dv=dv, data=data, between=between, detailed=True)
options.update(old_options) # Restore original options
df = aov.at[1, "DF"]
ng = aov.at[0, "DF"] + 1
grp = data.groupby(between, observed=True)[dv] # default is sort=True
# Careful: pd.unique does NOT sort whereas numpy does
# The line below should be equal to labels = np.unique(data[between])
# However, this does not work if between is a Categorical column, because
# Pandas applies a custom, not alphabetical, sorting.
# See https://github.com/raphaelvallat/pingouin/issues/111
labels = np.array(list(grp.groups.keys()))
n = grp.count().to_numpy()
gmeans = grp.mean(numeric_only=True).to_numpy()
gvar = aov.at[1, "MS"] / n
# Pairwise combinations
g1, g2 = np.array(list(combinations(np.arange(ng), 2))).T
mn = gmeans[g1] - gmeans[g2]
se = np.sqrt(gvar[g1] + gvar[g2])
tval = mn / se
# Critical values and p-values
# crit = studentized_range.ppf(1 - alpha, ng, df) / np.sqrt(2)
pval = studentized_range.sf(np.sqrt(2) * np.abs(tval), ng, df)
pval = np.clip(pval, 0, 1)
# Uncorrected p-values
# from scipy.stats import t
# punc = t.sf(np.abs(tval), n[g1].size + n[g2].size - 2) * 2
# Effect size
# Method 1: Approximation
# d = tval * np.sqrt(1 / n[g1] + 1 / n[g2])
# ef = convert_effsize(d, "cohen", effsize, n[g1], n[g2])
# Method 2: Exact
ef = []
for idx_a, idx_b in zip(g1, g2):
ef.append(
compute_effsize(
grp.get_group(labels[idx_a]),
grp.get_group(labels[idx_b]),
paired=False,
eftype=effsize,
)
)
# Create dataframe
stats = pd.DataFrame(
{
"A": labels[g1],
"B": labels[g2],
"mean(A)": gmeans[g1],
"mean(B)": gmeans[g2],
"diff": mn,
"se": se,
"T": tval,
"p-tukey": pval,
effsize: ef,
}
)
return _postprocess_dataframe(stats)
[docs]
def pairwise_gameshowell(data=None, dv=None, between=None, effsize="hedges"):
"""Pairwise Games-Howell post-hoc test.
Parameters
----------
data : :py:class:`pandas.DataFrame`
DataFrame
dv : string
Name of column containing the dependent variable.
between: string
Name of column containing the between factor.
effsize : string or None
Effect size type. Available methods are:
* ``'none'``: no effect size
* ``'cohen'``: Unbiased Cohen d
* ``'hedges'``: Hedges g
* ``'r'``: Pearson correlation coefficient
* ``'eta-square'``: Eta-square
* ``'odds-ratio'``: Odds ratio
* ``'AUC'``: Area Under the Curve
* ``'CLES'``: Common Language Effect Size
Returns
-------
stats : :py:class:`pandas.DataFrame`
Stats summary:
* ``'A'``: Name of first measurement
* ``'B'``: Name of second measurement
* ``'mean(A)'``: Mean of first measurement
* ``'mean(B)'``: Mean of second measurement
* ``'diff'``: Mean difference (= mean(A) - mean(B))
* ``'se'``: Standard error
* ``'T'``: T-values
* ``'df'``: adjusted degrees of freedom
* ``'pval'``: Games-Howell corrected p-values
* ``'hedges'``: Hedges effect size (or any effect size defined in
``effsize``)
See also
--------
pairwise_tests, pairwise_tukey
Notes
-----
Games-Howell [1]_ is very similar to the Tukey HSD post-hoc test but is much more robust to
heterogeneity of variances. While the Tukey-HSD post-hoc is optimal after a classic one-way
ANOVA, the Games-Howell is optimal after a Welch ANOVA. Please note that Games-Howell
is not valid for repeated measures ANOVA. Only one-way ANOVA design are supported.
Compared to the Tukey-HSD test, the Games-Howell test uses different pooled variances for
each pair of variables instead of the same pooled variance.
The T-values are defined as:
.. math::
t = \\frac{\\overline{x}_i - \\overline{x}_j}
{\\sqrt{(\\frac{s_i^2}{n_i} + \\frac{s_j^2}{n_j})}}
and the corrected degrees of freedom are:
.. math::
v = \\frac{(\\frac{s_i^2}{n_i} + \\frac{s_j^2}{n_j})^2}
{\\frac{(\\frac{s_i^2}{n_i})^2}{n_i-1} +
\\frac{(\\frac{s_j^2}{n_j})^2}{n_j-1}}
where :math:`\\overline{x}_i`, :math:`s_i^2`, and :math:`n_i` are the mean, variance and sample
size of the first group and :math:`\\overline{x}_j`, :math:`s_j^2`, and :math:`n_j` the mean,
variance and sample size of the second group.
The p-values are then approximated using the Studentized range distribution
:math:`Q(\\sqrt2|t_i|, r, v_i)`.
References
----------
.. [1] Games, Paul A., and John F. Howell. "Pairwise multiple comparison
procedures with unequal n's and/or variances: a Monte Carlo study."
Journal of Educational Statistics 1.2 (1976): 113-125.
.. [2] Gleason, John R. "An accurate, non-iterative approximation for
studentized range quantiles." Computational statistics & data
analysis 31.2 (1999): 147-158.
Examples
--------
Pairwise Games-Howell post-hocs on the Penguins dataset.
>>> import pingouin as pg
>>> df = pg.read_dataset('penguins')
>>> pg.pairwise_gameshowell(data=df, dv='body_mass_g',
... between='species').round(3)
A B mean(A) mean(B) diff se T df pval hedges
0 Adelie Chinstrap 3700.662 3733.088 -32.426 59.706 -0.543 152.455 0.85 -0.074
1 Adelie Gentoo 3700.662 5076.016 -1375.354 58.811 -23.386 249.643 0.00 -2.860
2 Chinstrap Gentoo 3733.088 5076.016 -1342.928 65.103 -20.628 170.404 0.00 -2.875
"""
# Check the dataframe
data = _check_dataframe(dv=dv, between=between, effects="between", data=data)
# Reset index (avoid duplicate axis error)
data = data.reset_index(drop=True)
# Extract infos
ng = data[between].nunique()
grp = data.groupby(between, observed=True)[dv] # default is sort=True
# Careful: pd.unique does NOT sort whereas numpy does
# The line below should be equal to labels = np.unique(data[between])
# However, this does not work if between is a Categorical column, because
# Pandas applies a custom, not alphabetical, sorting.
# See https://github.com/raphaelvallat/pingouin/issues/111
labels = np.array(list(grp.groups.keys()))
n = grp.count().to_numpy()
gmeans = grp.mean(numeric_only=True).to_numpy()
gvars = grp.var(numeric_only=True).to_numpy() # numeric_only=True added in pandas 1.5
# Pairwise combinations
g1, g2 = np.array(list(combinations(np.arange(ng), 2))).T
mn = gmeans[g1] - gmeans[g2]
se = np.sqrt(gvars[g1] / n[g1] + gvars[g2] / n[g2])
tval = mn / np.sqrt(gvars[g1] / n[g1] + gvars[g2] / n[g2])
df = (gvars[g1] / n[g1] + gvars[g2] / n[g2]) ** 2 / (
(((gvars[g1] / n[g1]) ** 2) / (n[g1] - 1)) + (((gvars[g2] / n[g2]) ** 2) / (n[g2] - 1))
)
# Compute corrected p-values
pval = studentized_range.sf(np.sqrt(2) * np.abs(tval), ng, df)
pval = np.clip(pval, 0, 1)
# Uncorrected p-values
# from scipy.stats import t
# punc = t.sf(np.abs(tval), n[g1].size + n[g2].size - 2) * 2
# Effect size
# Method 1: Approximation
# d = tval * np.sqrt(1 / n[g1] + 1 / n[g2])
# ef = convert_effsize(d, "cohen", effsize, n[g1], n[g2])
# Method 2: Exact
ef = []
for idx_a, idx_b in zip(g1, g2):
ef.append(
compute_effsize(
grp.get_group(labels[idx_a]),
grp.get_group(labels[idx_b]),
paired=False,
eftype=effsize,
)
)
# Create dataframe
stats = pd.DataFrame(
{
"A": labels[g1],
"B": labels[g2],
"mean(A)": gmeans[g1],
"mean(B)": gmeans[g2],
"diff": mn,
"se": se,
"T": tval,
"df": df,
"pval": pval,
effsize: ef,
}
)
return _postprocess_dataframe(stats)
[docs]
@pf.register_dataframe_method
def pairwise_corr(
data,
columns=None,
covar=None,
alternative="two-sided",
method="pearson",
padjust="none",
nan_policy="pairwise",
):
"""Pairwise (partial) correlations between columns of a pandas dataframe.
Parameters
----------
data : :py:class:`pandas.DataFrame`
DataFrame. Note that this function can also directly be used as a
Pandas method, in which case this argument is no longer needed.
columns : list or str
Column names in data:
* ``["a", "b", "c"]``: combination between columns a, b, and c.
* ``["a"]``: product between a and all the other numeric columns.
* ``[["a"], ["b", "c"]]``: product between ["a"] and ["b", "c"].
* ``[["a", "d"], ["b", "c"]]``: product between ["a", "d"] and
["b", "c"].
* ``[["a", "d"], None]``: product between ["a", "d"] and all other
numeric columns in dataframe.
If column is None, the function will return the pairwise correlation
between the combination of all the numeric columns in data.
See the examples section for more details on this.
covar : None, string or list
Covariate(s) for partial correlation. Must be one or more columns
in data. Use a list if there are more than one covariate. If
``covar`` is not None, a partial correlation will be computed using
:py:func:`pingouin.partial_corr` function.
.. important:: Only ``method='pearson'`` and ``method='spearman'``
are currently supported in partial correlation.
alternative : string
Defines the alternative hypothesis, or tail of the correlation. Must be one of
"two-sided" (default), "greater" or "less". Both "greater" and "less" return a one-sided
p-value. "greater" tests against the alternative hypothesis that the correlation is
positive (greater than zero), "less" tests against the hypothesis that the correlation is
negative.
method : string
Correlation type:
* ``'pearson'``: Pearson :math:`r` product-moment correlation
* ``'spearman'``: Spearman :math:`\\rho` rank-order correlation
* ``'kendall'``: Kendall's :math:`\\tau_B` correlation
(for ordinal data)
* ``'bicor'``: Biweight midcorrelation (robust)
* ``'percbend'``: Percentage bend correlation (robust)
* ``'shepherd'``: Shepherd's pi correlation (robust)
* ``'skipped'``: Skipped correlation (robust)
padjust : string
Method used for testing and adjustment of pvalues.
* ``'none'``: no correction
* ``'bonf'``: one-step Bonferroni correction
* ``'sidak'``: one-step Sidak correction
* ``'holm'``: step-down method using Bonferroni adjustments
* ``'fdr_bh'``: Benjamini/Hochberg FDR correction
* ``'fdr_by'``: Benjamini/Yekutieli FDR correction
nan_policy : string
Can be ``'listwise'`` for listwise deletion of missing values
(= complete-case analysis) or ``'pairwise'`` (default) for the more
liberal pairwise deletion (= available-case analysis).
.. versionadded:: 0.2.9
Returns
-------
stats : :py:class:`pandas.DataFrame`
* ``'X'``: Name(s) of first columns.
* ``'Y'``: Name(s) of second columns.
* ``'method'``: Correlation type.
* ``'covar'``: List of specified covariate(s), only when covariates are passed.
* ``'alternative'``: Tail of the test.
* ``'n'``: Sample size (after removal of missing values).
* ``'r'``: Correlation coefficients.
* ``'CI95'``: 95% parametric confidence intervals.
* ``'p-unc'``: Uncorrected p-values.
* ``'p-corr'``: Corrected p-values.
* ``'p-adjust'``: P-values correction method.
* ``'BF10'``: Bayes Factor of the alternative hypothesis (only for Pearson correlation)
* ``'power'``: achieved power of the test (= 1 - type II error).
Notes
-----
Please refer to the :py:func:`pingouin.corr()` function for a description
of the different methods. Missing values are automatically removed from the
data using a pairwise deletion.
This function is more flexible and gives a much more detailed
output than the :py:func:`pandas.DataFrame.corr()` method (i.e. p-values,
confidence interval, Bayes Factor...). This comes however at
an increased computational cost. While this should not be discernible for
a dataframe with less than 10,000 rows and/or less than 20 columns, this
function can be slow for very large datasets.
A faster alternative to get the r-values and p-values in a matrix format is
to use the :py:func:`pingouin.rcorr` function, which works directly as a
:py:class:`pandas.DataFrame` method (see example below).
This function also works with two-dimensional multi-index columns. In this
case, columns must be list(s) of tuple(s). Please refer to this `example
Jupyter notebook
<https://github.com/raphaelvallat/pingouin/blob/master/notebooks/04_Correlations.ipynb>`_
for more details.
If and only if ``covar`` is specified, this function will compute the
pairwise partial correlation between the variables. If you are only
interested in computing the partial correlation matrix (i.e. the raw
pairwise partial correlation coefficient matrix, without the p-values,
sample sizes, etc), a better alternative is to use the
:py:func:`pingouin.pcorr` function (see example 7).
Examples
--------
1. One-sided spearman correlation corrected for multiple comparisons
>>> import pandas as pd
>>> import pingouin as pg
>>> pd.set_option('display.expand_frame_repr', False)
>>> pd.set_option('display.max_columns', 20)
>>> data = pg.read_dataset('pairwise_corr').iloc[:, 1:]
>>> pg.pairwise_corr(data, method='spearman', alternative='greater', padjust='bonf').round(3)
X Y method alternative n r CI95% p-unc p-corr p-adjust power
0 Neuroticism Extraversion spearman greater 500 -0.325 [-0.39, 1.0] 1.000 1.000 bonf 0.000
1 Neuroticism Openness spearman greater 500 -0.028 [-0.1, 1.0] 0.735 1.000 bonf 0.012
2 Neuroticism Agreeableness spearman greater 500 -0.151 [-0.22, 1.0] 1.000 1.000 bonf 0.000
3 Neuroticism Conscientiousness spearman greater 500 -0.356 [-0.42, 1.0] 1.000 1.000 bonf 0.000
4 Extraversion Openness spearman greater 500 0.243 [0.17, 1.0] 0.000 0.000 bonf 1.000
5 Extraversion Agreeableness spearman greater 500 0.062 [-0.01, 1.0] 0.083 0.832 bonf 0.398
6 Extraversion Conscientiousness spearman greater 500 0.056 [-0.02, 1.0] 0.106 1.000 bonf 0.345
7 Openness Agreeableness spearman greater 500 0.170 [0.1, 1.0] 0.000 0.001 bonf 0.985
8 Openness Conscientiousness spearman greater 500 -0.007 [-0.08, 1.0] 0.560 1.000 bonf 0.036
9 Agreeableness Conscientiousness spearman greater 500 0.161 [0.09, 1.0] 0.000 0.002 bonf 0.976
2. Robust two-sided biweight midcorrelation with uncorrected p-values
>>> pcor = pg.pairwise_corr(data, columns=['Openness', 'Extraversion',
... 'Neuroticism'], method='bicor')
>>> pcor.round(3)
X Y method alternative n r CI95% p-unc power
0 Openness Extraversion bicor two-sided 500 0.247 [0.16, 0.33] 0.000 1.000
1 Openness Neuroticism bicor two-sided 500 -0.028 [-0.12, 0.06] 0.535 0.095
2 Extraversion Neuroticism bicor two-sided 500 -0.343 [-0.42, -0.26] 0.000 1.000
3. One-versus-all pairwise correlations
>>> pg.pairwise_corr(data, columns=['Neuroticism']).round(3)
X Y method alternative n r CI95% p-unc BF10 power
0 Neuroticism Extraversion pearson two-sided 500 -0.350 [-0.42, -0.27] 0.000 6.765e+12 1.000
1 Neuroticism Openness pearson two-sided 500 -0.010 [-0.1, 0.08] 0.817 0.058 0.056
2 Neuroticism Agreeableness pearson two-sided 500 -0.134 [-0.22, -0.05] 0.003 5.122 0.854
3 Neuroticism Conscientiousness pearson two-sided 500 -0.368 [-0.44, -0.29] 0.000 2.644e+14 1.000
4. Pairwise correlations between two lists of columns (cartesian product)
>>> columns = [['Neuroticism', 'Extraversion'], ['Openness']]
>>> pg.pairwise_corr(data, columns).round(3)
X Y method alternative n r CI95% p-unc BF10 power
0 Neuroticism Openness pearson two-sided 500 -0.010 [-0.1, 0.08] 0.817 0.058 0.056
1 Extraversion Openness pearson two-sided 500 0.267 [0.18, 0.35] 0.000 5.277e+06 1.000
5. As a Pandas method
>>> pcor = data.pairwise_corr(covar='Neuroticism', method='spearman')
6. Pairwise partial correlation
>>> pg.pairwise_corr(data, covar=['Neuroticism', 'Openness'])
X Y method covar alternative n r CI95% p-unc
0 Extraversion Agreeableness pearson ['Neuroticism', 'Openness'] two-sided 500 -0.038737 [-0.13, 0.05] 0.388361
1 Extraversion Conscientiousness pearson ['Neuroticism', 'Openness'] two-sided 500 -0.071427 [-0.16, 0.02] 0.111389
2 Agreeableness Conscientiousness pearson ['Neuroticism', 'Openness'] two-sided 500 0.123108 [0.04, 0.21] 0.005944
7. Pairwise partial correlation matrix using :py:func:`pingouin.pcorr`
>>> data[['Neuroticism', 'Openness', 'Extraversion']].pcorr().round(3)
Neuroticism Openness Extraversion
Neuroticism 1.000 0.092 -0.360
Openness 0.092 1.000 0.281
Extraversion -0.360 0.281 1.000
8. Correlation matrix with p-values using :py:func:`pingouin.rcorr`
>>> data[['Neuroticism', 'Openness', 'Extraversion']].rcorr()
Neuroticism Openness Extraversion
Neuroticism - ***
Openness -0.01 - ***
Extraversion -0.35 0.267 -
"""
from pingouin.correlation import corr, partial_corr
# Check arguments
assert alternative in [
"two-sided",
"greater",
"less",
], "Alternative must be one of 'two-sided' (default), 'greater' or 'less'."
assert nan_policy in ["listwise", "pairwise"]
# Keep only numeric columns
data = data._get_numeric_data()
# Remove columns with constant value and/or NaN
data = data.loc[:, data.nunique(dropna=True) >= 2]
# Extract columns names
keys = data.columns.tolist()
# First ensure that columns is a list
if isinstance(columns, (str, tuple)):
columns = [columns]
def traverse(o, tree_types=(list, tuple)):
"""Helper function to flatten nested lists.
From https://stackoverflow.com/a/6340578
"""
if isinstance(o, tree_types):
for value in o:
yield from traverse(value, tree_types)
else:
yield o
# Check if columns index has multiple levels
if isinstance(data.columns, pd.MultiIndex):
multi_index = True
if columns is not None:
# Simple List with one element: [('L0', 'L1')]
# Simple list with >= 2 elements: [('L0', 'L1'), ('L0', 'L2')]
# Nested lists: [[('L0', 'L1')], ...] or [..., [('L0', 'L1')]]
col_flatten = list(traverse(columns, tree_types=list))
assert all(isinstance(c, (tuple, type(None))) for c in col_flatten)
else:
multi_index = False
# Then define combinations / products between columns
if columns is None:
# Case A: column is not defined --> corr between all numeric columns
combs = list(combinations(keys, 2))
else:
# Case B: column is specified
if isinstance(columns[0], (list, np.ndarray)):
group1 = [e for e in columns[0] if e in keys]
# Assert that column is two-dimensional
if len(columns) == 1:
columns.append(None)
if isinstance(columns[1], (list, np.ndarray)) and len(columns[1]):
# B1: [['a', 'b'], ['c', 'd']]
group2 = [e for e in columns[1] if e in keys]
else:
# B2: [['a', 'b']], [['a', 'b'], None] or [['a', 'b'], 'all']
group2 = [e for e in keys if e not in group1]
combs = list(product(group1, group2))
else:
# Column is a simple list
if len(columns) == 1:
# Case B3: one-versus-all, e.g. ['a'] or 'a'
# Check that this column exist
if columns[0] not in keys:
msg = '"%s" is not in data or is not numeric.' % columns[0]
raise ValueError(msg)
others = [e for e in keys if e != columns[0]]
combs = list(product(columns, others))
else:
# Combinations between all specified columns ['a', 'b', 'c']
# Make sure that we keep numeric columns
columns = [c for c in columns if c in keys]
if len(columns) == 1:
# If only one-column is left, equivalent to ['a']
others = [e for e in keys if e != columns[0]]
combs = list(product(columns, others))
else:
# combinations between ['a', 'b', 'c']
combs = list(combinations(columns, 2))
combs = np.array(combs)
if len(combs) == 0:
raise ValueError(
"No column combination found. Please make sure that "
"the specified columns exist in the dataframe, are "
"numeric, and contains at least two unique values."
)
# Initialize empty dataframe
if multi_index:
X = list(zip(combs[:, 0, 0], combs[:, 0, 1]))
Y = list(zip(combs[:, 1, 0], combs[:, 1, 1]))
else:
X = combs[:, 0]
Y = combs[:, 1]
stats = pd.DataFrame(
{"X": X, "Y": Y, "method": method, "alternative": alternative},
index=range(len(combs)),
columns=[
"X",
"Y",
"method",
"alternative",
"n",
"outliers",
"r",
"CI95%",
"p-val",
"BF10",
"power",
],
)
# Now we check if covariates are present
if covar is not None:
assert isinstance(covar, (str, list, pd.Index)), "covar must be list or string."
if isinstance(covar, str):
covar = [covar]
elif isinstance(covar, pd.Index):
covar = covar.tolist()
# Check that columns exist and are numeric
assert all(
[c in keys for c in covar]
), "Covariate(s) are either not in data or not numeric."
# And we make sure that X or Y does not contain covar
stats = stats[~stats[["X", "Y"]].isin(covar).any(axis=1)]
stats = stats.reset_index(drop=True)
if stats.shape[0] == 0:
raise ValueError(
"No column combination found. Please make sure "
"that the specified columns and covar exist in "
"the dataframe, are numeric, and contains at "
"least two unique values."
)
# Listwise deletion of missing values
if nan_policy == "listwise":
all_cols = np.unique(stats[["X", "Y"]].to_numpy()).tolist()
if covar is not None:
all_cols.extend(covar)
data = data[all_cols].dropna()
# For max precision, make sure rounding is disabled
old_options = options.copy()
options["round"] = None
# Compute pairwise correlations and fill dataframe
for i in range(stats.shape[0]):
col1, col2 = stats.at[i, "X"], stats.at[i, "Y"]
if covar is None:
cor_st = corr(
data[col1].to_numpy(), data[col2].to_numpy(), alternative=alternative, method=method
)
else:
cor_st = partial_corr(
data=data, x=col1, y=col2, covar=covar, alternative=alternative, method=method
)
cor_st_keys = cor_st.columns.tolist()
for c in cor_st_keys:
stats.at[i, c] = cor_st.at[method, c]
options.update(old_options) # restore options
# Force conversion to numeric
stats = stats.astype({"r": float, "n": int, "p-val": float, "outliers": float, "power": float})
# Multiple comparisons
stats = stats.rename(columns={"p-val": "p-unc"})
padjust = None if stats["p-unc"].size <= 1 else padjust
if padjust is not None:
if padjust.lower() != "none":
reject, stats["p-corr"] = multicomp(stats["p-unc"].to_numpy(), method=padjust)
stats["p-adjust"] = padjust
else:
stats["p-corr"] = None
stats["p-adjust"] = None
# Standardize correlation coefficients (Fisher z-transformation)
# stats['z'] = np.arctanh(stats['r'].to_numpy())
col_order = [
"X",
"Y",
"method",
"alternative",
"n",
"outliers",
"r",
"CI95%",
"p-unc",
"p-corr",
"p-adjust",
"BF10",
"power",
]
# Reorder columns and remove empty ones
stats = stats.reindex(columns=col_order).dropna(how="all", axis=1)
# Add covariates names if present
if covar is not None:
stats.insert(loc=3, column="covar", value=str(covar))
return _postprocess_dataframe(stats)