https://badge.fury.io/py/pingouin.svg https://img.shields.io/conda/vn/conda-forge/pingouin.svg https://img.shields.io/github/license/raphaelvallat/pingouin.svg https://github.com/raphaelvallat/pingouin/actions/workflows/python_tests.yml/badge.svg https://codecov.io/gh/raphaelvallat/pingouin/branch/master/graph/badge.svg https://pepy.tech/badge/pingouin/month http://joss.theoj.org/papers/d2254e6d8e8478da192148e4cfbe4244/status.svg
_images/logo_pingouin.png

Pingouin is an open-source statistical package written in Python 3 and based mostly on Pandas and NumPy. Some of its main features are listed below. For a full list of available functions, please refer to the API documentation.

  1. ANOVAs: N-ways, repeated measures, mixed, ancova

  2. Pairwise post-hocs tests (parametric and non-parametric) and pairwise correlations

  3. Robust, partial, distance and repeated measures correlations

  4. Linear/logistic regression and mediation analysis

  5. Bayes Factors

  6. Multivariate tests

  7. Reliability and consistency

  8. Effect sizes and power analysis

  9. Parametric/bootstrapped confidence intervals around an effect size or a correlation coefficient

  10. Circular statistics

  11. Chi-squared tests

  12. Plotting: Bland-Altman plot, Q-Q plot, paired plot, robust correlation…

Pingouin is designed for users who want simple yet exhaustive stats functions.

For example, the ttest_ind function of SciPy returns only the T-value and the p-value. By contrast, the ttest function of Pingouin returns the T-value, the p-value, the degrees of freedom, the effect size (Cohen’s d), the 95% confidence intervals of the difference in means, the statistical power and the Bayes Factor (BF10) of the test.


Installation#

Pingouin is a Python 3 package and is currently tested for Python 3.8-3.11.

The main dependencies of Pingouin are :

In addition, some functions require :

Pingouin can be easily installed using pip

pip install pingouin

or conda

conda install -c conda-forge pingouin

Pingouin is under heavy development and it is likely that bugs/mistakes will be discovered in future releases. Please always make sure that you are using the latest version of Pingouin (new releases are frequent). Whenever a new release is out there, you can upgrade your version by typing the following line in a terminal window:

pip install --upgrade pingouin

Quick start#

  • If you have questions, please ask them in GitHub Discussions.

  • If you want to report a bug, please open an issue on the GitHub repository.

  • If you want to see Pingouin in action, please click on the link below and navigate to the notebooks/ folder to open a collection of interactive Jupyter notebooks.

    https://mybinder.org/badge.svg

10 minutes to Pingouin#

1. T-test#

import numpy as np
import pingouin as pg

np.random.seed(123)
mean, cov, n = [4, 5], [(1, .6), (.6, 1)], 30
x, y = np.random.multivariate_normal(mean, cov, n).T

# T-test
pg.ttest(x, y)
Output#

T

dof

alternative

p-val

CI95%

cohen-d

BF10

power

-3.401

58

two-sided

0.001

[-1.68 -0.43]

0.878

26.155

0.917


2. Pearson’s correlation#

pg.corr(x, y)
Output#

n

r

CI95%

p-val

BF10

power

30

0.595

[0.3 0.79]

0.001

69.723

0.950


3. Robust correlation#

# Introduce an outlier
x[5] = 18
# Use the robust biweight midcorrelation
pg.corr(x, y, method="bicor")
Output#

n

r

CI95%

p-val

power

30

0.576

[0.27 0.78]

0.001

0.933


4. Test the normality of the data#

The pingouin.normality() function works with lists, arrays, or pandas DataFrame in wide or long-format.

print(pg.normality(x))                                    # Univariate normality
print(pg.multivariate_normality(np.column_stack((x, y)))) # Multivariate normality
Output#

W

pval

normal

0.615

0.000

False

(False, 0.00018)

5. Q-Q plot#

import numpy as np
import pingouin as pg
np.random.seed(123)
x = np.random.normal(size=50)
ax = pg.qqplot(x, dist='norm')
_images/index-1.png

6. One-way ANOVA using a pandas DataFrame#

# Read an example dataset
df = pg.read_dataset('mixed_anova')

# Run the ANOVA
aov = pg.anova(data=df, dv='Scores', between='Group', detailed=True)
print(aov)
Output#

Source

SS

DF

MS

F

p-unc

np2

Group

5.460

1

5.460

5.244

0.023

0.029

Within

185.343

178

1.041

nan

nan

nan


7. Repeated measures ANOVA#

pg.rm_anova(data=df, dv='Scores', within='Time', subject='Subject', detailed=True)
Output#

Source

SS

DF

MS

F

p-unc

ng2

eps

Time

7.628

2

3.814

3.913

0.023

0.04

0.999

Error

115.027

118

0.975

nan

nan

nan

nan


8. Post-hoc tests corrected for multiple-comparisons#

# FDR-corrected post hocs with Hedges'g effect size
posthoc = pg.pairwise_tests(data=df, dv='Scores', within='Time', subject='Subject',
                             parametric=True, padjust='fdr_bh', effsize='hedges')

# Pretty printing of table
pg.print_table(posthoc, floatfmt='.3f')
Output#

Contrast

A

B

Paired

Parametric

T

dof

alternative

p-unc

p-corr

p-adjust

BF10

hedges

Time

August

January

True

True

-1.740

59.000

two-sided

0.087

0.131

fdr_bh

0.582

-0.328

Time

August

June

True

True

-2.743

59.000

two-sided

0.008

0.024

fdr_bh

4.232

-0.483

Time

January

June

True

True

-1.024

59.000

two-sided

0.310

0.310

fdr_bh

0.232

-0.170


9. Two-way mixed ANOVA#

# Compute the two-way mixed ANOVA and export to a .csv file
aov = pg.mixed_anova(data=df, dv='Scores', between='Group', within='Time',
                     subject='Subject', correction=False, effsize="np2")
pg.print_table(aov)
Output#

Source

SS

DF1

DF2

MS

F

p-unc

np2

eps

Group

5.460

1

58

5.460

5.052

0.028

0.080

nan

Time

7.628

2

116

3.814

4.027

0.020

0.065

0.999

Interaction

5.167

2

116

2.584

2.728

0.070

0.045

nan


10. Pairwise correlations between columns of a dataframe#

import pandas as pd
np.random.seed(123)
z = np.random.normal(5, 1, 30)
data = pd.DataFrame({'X': x, 'Y': y, 'Z': z})
pg.pairwise_corr(data, columns=['X', 'Y', 'Z'], method='pearson')
Output#

X

Y

method

alternative

n

r

CI95%

p-unc

BF10

power

X

Y

pearson

two-sided

30

0.366

[0.01 0.64]

0.047

1.500

0.525

X

Z

pearson

two-sided

30

0.251

[-0.12 0.56]

0.181

0.534

0.272

Y

Z

pearson

two-sided

30

0.020

[-0.34 0.38]

0.916

0.228

0.051


11. Pairwise T-test between columns of a dataframe#

data.ptests(paired=True, stars=False)
Pairwise T-tests, with T-values on the lower triangle and p-values on the upper triangle#

X

Y

Z

X

0.226

0.165

Y

-1.238

0.658

Z

-1.424

-0.447


12. Multiple linear regression#

pg.linear_regression(data[['X', 'Z']], data['Y'])
Linear regression summary#

names

coef

se

T

pval

r2

adj_r2

CI[2.5%]

CI[97.5%]

Intercept

4.650

0.841

5.530

0.000

0.139

0.076

2.925

6.376

X

0.143

0.068

2.089

0.046

0.139

0.076

0.003

0.283

Z

-0.069

0.167

-0.416

0.681

0.139

0.076

-0.412

0.273


13. Mediation analysis#

pg.mediation_analysis(data=data, x='X', m='Z', y='Y', seed=42, n_boot=1000)
Mediation summary#

path

coef

se

pval

CI[2.5%]

CI[97.5%]

sig

Z ~ X

0.103

0.075

0.181

-0.051

0.256

No

Y ~ Z

0.018

0.171

0.916

-0.332

0.369

No

Total

0.136

0.065

0.047

0.002

0.269

Yes

Direct

0.143

0.068

0.046

0.003

0.283

Yes

Indirect

-0.007

0.025

0.898

-0.069

0.029

No


14. Contingency analysis#

data = pg.read_dataset('chi2_independence')
expected, observed, stats = pg.chi2_independence(data, x='sex', y='target')
stats
Chi-squared tests summary#

test

lambda

chi2

dof

p

cramer

power

pearson

1.000

22.717

1.000

0.000

0.274

0.997

cressie-read

0.667

22.931

1.000

0.000

0.275

0.998

log-likelihood

0.000

23.557

1.000

0.000

0.279

0.998

freeman-tukey

-0.500

24.220

1.000

0.000

0.283

0.998

mod-log-likelihood

-1.000

25.071

1.000

0.000

0.288

0.999

neyman

-2.000

27.458

1.000

0.000

0.301

0.999


15. Bland-Altman plot#

import numpy as np
import pingouin as pg
np.random.seed(123)
mean, cov = [10, 11], [[1, 0.8], [0.8, 1]]
x, y = np.random.multivariate_normal(mean, cov, 30).T
ax = pg.plot_blandaltman(x, y)
_images/index-2.png

16. Plot achieved power of a paired T-test#

Plot the curve of achieved power given the effect size (Cohen d) and the sample size of a paired T-test.

import matplotlib.pyplot as plt
import seaborn as sns
import pingouin as pg
import numpy as np
sns.set(style='ticks', context='notebook', font_scale=1.2)
d = 0.5  # Fixed effect size
n = np.arange(5, 80, 5)  # Incrementing sample size
# Compute the achieved power
pwr = pg.power_ttest(d=d, n=n, contrast='paired')
# Start the plot
plt.plot(n, pwr, 'ko-.')
plt.axhline(0.8, color='r', ls=':')
plt.xlabel('Sample size')
plt.ylabel('Power (1 - type II error)')
plt.title('Achieved power of a paired T-test')
sns.despine()
_images/index-3.png

17. Paired plot#

import pingouin as pg
import numpy as np
df = pg.read_dataset('mixed_anova').query("Group == 'Meditation' and Time != 'January'")
ax = pg.plot_paired(data=df, dv='Scores', within='Time', subject='Subject')
ax.set_title("Effect of meditation on school performance")
_images/index-4.png

Integration with Pandas#

Several functions of Pingouin can be used directly as pandas.DataFrame methods. Try for yourself with the code below:

import pingouin as pg

# Example 1 | ANOVA
df = pg.read_dataset('mixed_anova')
df.anova(dv='Scores', between='Group', detailed=True)

# Example 2 | Pairwise correlations
data = pg.read_dataset('mediation')
data.pairwise_corr(columns=['X', 'M', 'Y'], covar=['Mbin'])

# Example 3 | Partial correlation matrix
data.pcorr()

The functions that are currently supported as pandas method are:


Development#

Pingouin was created and is maintained by Raphael Vallat, a postdoctoral researcher at UC Berkeley, mostly during his spare time. Contributions are more than welcome so feel free to contact me, open an issue or submit a pull request!

To see the code or report a bug, please visit the GitHub repository.

This program is provided with NO WARRANTY OF ANY KIND. Pingouin is still under heavy development and there are likely hidden bugs. Always double check the results with another statistical software.

Contributors

Acknowledgement#

Several functions of Pingouin were inspired from R or Matlab toolboxes, including: