pingouin.pcorr#
- pingouin.pcorr(self)[source]#
Partial correlation matrix (
pandas.DataFrame
method).- Returns:
- pcormat
pandas.DataFrame
Partial correlation matrix.
- pcormat
Notes
This function calculates the pairwise partial correlations for each pair of variables in a
pandas.DataFrame
given all the others. It has the same behavior as the pcor function in the ppcor R package.Note that this function only returns the raw Pearson correlation coefficient. If you want to calculate the test statistic and p-values, or use more robust estimates of the correlation coefficient, please refer to the
pingouin.pairwise_corr()
orpingouin.partial_corr()
functions.Examples
>>> import pingouin as pg >>> data = pg.read_dataset('mediation') >>> data.pcorr().round(3) X M Y Mbin Ybin W1 W2 X 1.000 0.359 0.074 -0.019 -0.147 -0.148 -0.067 M 0.359 1.000 0.555 -0.024 -0.112 -0.138 -0.176 Y 0.074 0.555 1.000 -0.001 0.169 0.101 0.108 Mbin -0.019 -0.024 -0.001 1.000 -0.080 -0.032 -0.040 Ybin -0.147 -0.112 0.169 -0.080 1.000 -0.000 -0.140 W1 -0.148 -0.138 0.101 -0.032 -0.000 1.000 -0.394 W2 -0.067 -0.176 0.108 -0.040 -0.140 -0.394 1.000
On a subset of columns
>>> data[['X', 'Y', 'M']].pcorr() X Y M X 1.000000 0.036649 0.412804 Y 0.036649 1.000000 0.540140 M 0.412804 0.540140 1.000000