pingouin.compute_effsize_from_t#
- pingouin.compute_effsize_from_t(tval, nx=None, ny=None, N=None, eftype='cohen')[source]#
Compute effect size from a T-value.
- Parameters:
- tvalfloat
T-value
- nx, nyint, optional
Group sample sizes.
- Nint, optional
Total sample size (will not be used if nx and ny are specified)
- eftypestring, optional
Desired output effect size.
- Returns:
- effloat
Effect size
See also
compute_effsize
Calculate effect size between two set of observations.
convert_effsize
Conversion between effect sizes.
Notes
If both nx and ny are specified, the formula to convert from t to d is:
\[d = t * \sqrt{\frac{1}{n_x} + \frac{1}{n_y}}\]If only N (total sample size) is specified, the formula is:
\[d = \frac{2t}{\sqrt{N}}\]Examples
Compute effect size from a T-value when both sample sizes are known.
>>> from pingouin import compute_effsize_from_t >>> tval, nx, ny = 2.90, 35, 25 >>> d = compute_effsize_from_t(tval, nx=nx, ny=ny, eftype='cohen') >>> print(d) 0.7593982580212534
Compute effect size when only total sample size is known (nx+ny)
>>> tval, N = 2.90, 60 >>> d = compute_effsize_from_t(tval, N=N, eftype='cohen') >>> print(d) 0.7487767802667672