pingouin.convert_effsize#
- pingouin.convert_effsize(ef, input_type, output_type, nx=None, ny=None)[source]#
Conversion between effect sizes.
- Parameters:
- effloat
Original effect size.
- input_typestring
Effect size type of ef. Must be
'cohen'
or'pointbiserialr'
.- output_typestring
Desired effect size type. Available methods are:
'cohen'
: Unbiased Cohen d'hedges'
: Hedges g'pointbiserialr'
: Point-biserial correlation'eta-square'
: Eta-square'odds-ratio'
: Odds ratio'AUC'
: Area Under the Curve'none'
: pass-through (returnef
)
- nx, nyint, optional
Length of vector x and y. Required to convert to Hedges g.
- Returns:
- effloat
Desired converted effect size
See also
compute_effsize
Calculate effect size between two set of observations.
compute_effsize_from_t
Convert a T-statistic to an effect size.
Notes
The formula to convert from a`point-biserial correlation <https://en.wikipedia.org/wiki/Point-biserial_correlation_coefficient>`_ r to d is given in [1]:
\[d = \frac{2r_{pb}}{\sqrt{1 - r_{pb}^2}}\]The formula to convert d to a point-biserial correlation r is given in [2]:
\[r_{pb} = \frac{d}{\sqrt{d^2 + \frac{(n_x + n_y)^2 - 2(n_x + n_y)} {n_xn_y}}}\]The formula to convert d to \(\eta^2\) is given in [3]:
\[\eta^2 = \frac{(0.5 d)^2}{1 + (0.5 d)^2}\]The formula to convert d to an odds-ratio is given in [4]:
\[\text{OR} = \exp (\frac{d \pi}{\sqrt{3}})\]The formula to convert d to area under the curve is given in [5]:
\[\text{AUC} = \mathcal{N}_{cdf}(\frac{d}{\sqrt{2}})\]References
[1]Rosenthal, Robert. “Parametric measures of effect size.” The handbook of research synthesis 621 (1994): 231-244.
[2]McGrath, Robert E., and Gregory J. Meyer. “When effect sizes disagree: the case of r and d.” Psychological methods 11.4 (2006): 386.
[3]Cohen, Jacob. “Statistical power analysis for the behavioral sciences. 2nd.” (1988).
[4]Borenstein, Michael, et al. “Effect sizes for continuous data.” The handbook of research synthesis and meta-analysis 2 (2009): 221-235.
[5]Ruscio, John. “A probability-based measure of effect size: Robustness to base rates and other factors.” Psychological methods 1 3.1 (2008): 19.
Examples
Convert from Cohen d to eta-square
>>> import pingouin as pg >>> d = .45 >>> eta = pg.convert_effsize(d, 'cohen', 'eta-square') >>> print(eta) 0.048185603807257595
Convert from Cohen d to Hegdes g (requires the sample sizes of each group)
>>> pg.convert_effsize(.45, 'cohen', 'hedges', nx=10, ny=10) 0.4309859154929578
Convert a point-biserial correlation to Cohen d
>>> rpb = 0.40 >>> d = pg.convert_effsize(rpb, 'pointbiserialr', 'cohen') >>> print(d) 0.8728715609439696
Reverse operation: convert Cohen d to a point-biserial correlation
>>> pg.convert_effsize(d, 'cohen', 'pointbiserialr') 0.4000000000000001