pingouin.ttest#
- pingouin.ttest(x, y, paired=False, alternative='two-sided', correction='auto', r=0.707, confidence=0.95)[source]#
T-test.
- Parameters:
- xarray_like
First set of observations.
- yarray_like or float
Second set of observations. If
y
is a single value, a one-sample T-test is computed against that value (= “mu” in the t.test R function).- pairedboolean
Specify whether the two observations are related (i.e. repeated measures) or independent.
- alternativestring
Defines the alternative hypothesis, or tail of the test. Must be one of “two-sided” (default), “greater” or “less”. Both “greater” and “less” return one-sided p-values. “greater” tests against the alternative hypothesis that the mean of
x
is greater than the mean ofy
.- correctionstring or boolean
For unpaired two sample T-tests, specify whether or not to correct for unequal variances using Welch separate variances T-test. If ‘auto’, it will automatically uses Welch T-test when the sample sizes are unequal, as recommended by Zimmerman 2004.
- rfloat
Cauchy scale factor for computing the Bayes Factor. Smaller values of r (e.g. 0.5), may be appropriate when small effect sizes are expected a priori; larger values of r are appropriate when large effect sizes are expected (Rouder et al 2009). The default is 0.707 (= \(\sqrt{2} / 2\)).
- confidencefloat
Confidence level for the confidence intervals (0.95 = 95%)
Added in version 0.3.9.
- Returns:
- stats
pandas.DataFrame
'T'
: T-value'dof'
: degrees of freedom'alternative'
: alternative of the test'p-val'
: p-value'CI95%'
: confidence intervals of the difference in means'cohen-d'
: Cohen d effect size'BF10'
: Bayes Factor of the alternative hypothesis'power'
: achieved power of the test ( = 1 - type II error)
- stats
See also
Notes
Missing values are automatically removed from the data. If
x
andy
are paired, the entire row is removed (= listwise deletion).The T-value for unpaired samples is defined as:
\[t = \frac{\overline{x} - \overline{y}} {\sqrt{\frac{s^{2}_{x}}{n_{x}} + \frac{s^{2}_{y}}{n_{y}}}}\]where \(\overline{x}\) and \(\overline{y}\) are the sample means, \(n_{x}\) and \(n_{y}\) are the sample sizes, and \(s^{2}_{x}\) and \(s^{2}_{y}\) are the sample variances. The degrees of freedom \(v\) are \(n_x + n_y - 2\) when the sample sizes are equal. When the sample sizes are unequal or when
correction=True
, the Welch–Satterthwaite equation is used to approximate the adjusted degrees of freedom:\[v = \frac{(\frac{s^{2}_{x}}{n_{x}} + \frac{s^{2}_{y}}{n_{y}})^{2}} {\frac{(\frac{s^{2}_{x}}{n_{x}})^{2}}{(n_{x}-1)} + \frac{(\frac{s^{2}_{y}}{n_{y}})^{2}}{(n_{y}-1)}}\]The p-value is then calculated using a T distribution with \(v\) degrees of freedom.
The T-value for paired samples is defined by:
\[t = \frac{\overline{x}_d}{s_{\overline{x}}}\]where
\[s_{\overline{x}} = \frac{s_d}{\sqrt n}\]where \(\overline{x}_d\) is the sample mean of the differences between the two paired samples, \(n\) is the number of observations (sample size), \(s_d\) is the sample standard deviation of the differences and \(s_{\overline{x}}\) is the estimated standard error of the mean of the differences. The p-value is then calculated using a T-distribution with \(n-1\) degrees of freedom.
The scaled Jeffrey-Zellner-Siow (JZS) Bayes Factor is approximated using the
pingouin.bayesfactor_ttest()
function.Results have been tested against JASP and the t.test R function.
References
https://www.itl.nist.gov/div898/handbook/eda/section3/eda353.htm
Delacre, M., Lakens, D., & Leys, C. (2017). Why psychologists should by default use Welch’s t-test instead of Student’s t-test. International Review of Social Psychology, 30(1).
Zimmerman, D. W. (2004). A note on preliminary tests of equality of variances. British Journal of Mathematical and Statistical Psychology, 57(1), 173-181.
Rouder, J.N., Speckman, P.L., Sun, D., Morey, R.D., Iverson, G., 2009. Bayesian t tests for accepting and rejecting the null hypothesis. Psychon. Bull. Rev. 16, 225–237. https://doi.org/10.3758/PBR.16.2.225
Examples
One-sample T-test.
>>> from pingouin import ttest >>> x = [5.5, 2.4, 6.8, 9.6, 4.2] >>> ttest(x, 4).round(2) T dof alternative p-val CI95% cohen-d BF10 power T-test 1.4 4 two-sided 0.23 [2.32, 9.08] 0.62 0.766 0.19
One sided paired T-test.
>>> pre = [5.5, 2.4, 6.8, 9.6, 4.2] >>> post = [6.4, 3.4, 6.4, 11., 4.8] >>> ttest(pre, post, paired=True, alternative='less').round(2) T dof alternative p-val CI95% cohen-d BF10 power T-test -2.31 4 less 0.04 [-inf, -0.05] 0.25 3.122 0.12
Now testing the opposite alternative hypothesis
>>> ttest(pre, post, paired=True, alternative='greater').round(2) T dof alternative p-val CI95% cohen-d BF10 power T-test -2.31 4 greater 0.96 [-1.35, inf] 0.25 0.32 0.02
Paired T-test with missing values.
>>> import numpy as np >>> pre = [5.5, 2.4, np.nan, 9.6, 4.2] >>> post = [6.4, 3.4, 6.4, 11., 4.8] >>> ttest(pre, post, paired=True).round(3) T dof alternative p-val CI95% cohen-d BF10 power T-test -5.902 3 two-sided 0.01 [-1.5, -0.45] 0.306 7.169 0.073
Compare with SciPy
>>> from scipy.stats import ttest_rel >>> np.round(ttest_rel(pre, post, nan_policy="omit"), 3) array([-5.902, 0.01 ])
Independent two-sample T-test with equal sample size.
>>> np.random.seed(123) >>> x = np.random.normal(loc=7, size=20) >>> y = np.random.normal(loc=4, size=20) >>> ttest(x, y) T dof alternative p-val CI95% cohen-d BF10 power T-test 9.106452 38 two-sided 4.306971e-11 [2.64, 4.15] 2.879713 1.366e+08 1.0
Independent two-sample T-test with unequal sample size. A Welch’s T-test is used.
>>> np.random.seed(123) >>> y = np.random.normal(loc=6.5, size=15) >>> ttest(x, y) T dof alternative p-val CI95% cohen-d BF10 power T-test 1.996537 31.567592 two-sided 0.054561 [-0.02, 1.65] 0.673518 1.469 0.481867
However, the Welch’s correction can be disabled:
>>> ttest(x, y, correction=False) T dof alternative p-val CI95% cohen-d BF10 power T-test 1.971859 33 two-sided 0.057056 [-0.03, 1.66] 0.673518 1.418 0.481867
Compare with SciPy
>>> from scipy.stats import ttest_ind >>> np.round(ttest_ind(x, y, equal_var=True), 6) # T value and p-value array([1.971859, 0.057056])