pingouin.remove_na#
- pingouin.remove_na(x, y=None, paired=False, axis='rows')[source]#
Remove missing values along a given axis in one or more (paired) numpy arrays.
- Parameters:
- x, y1D or 2D arrays
Data.
x
andy
must have the same number of dimensions.y
can be None to only remove missing values inx
.- pairedbool
Indicates if the measurements are paired or not.
- axisstr
Axis or axes along which missing values are removed. Can be ‘rows’ or ‘columns’. This has no effect if
x
andy
are one-dimensional arrays.
- Returns:
- x, ynp.ndarray
Data without missing values
Examples
Single 1D array
>>> import numpy as np >>> from pingouin import remove_na >>> x = [6.4, 3.2, 4.5, np.nan] >>> remove_na(x) array([6.4, 3.2, 4.5])
With two paired 1D arrays
>>> y = [2.3, np.nan, 5.2, 4.6] >>> remove_na(x, y, paired=True) (array([6.4, 4.5]), array([2.3, 5.2]))
With two independent 2D arrays
>>> x = np.array([[4, 2], [4, np.nan], [7, 6]]) >>> y = np.array([[6, np.nan], [3, 2], [2, 2]]) >>> x_no_nan, y_no_nan = remove_na(x, y, paired=False)