pingouin.harrelldavis#
- pingouin.harrelldavis(x, quantile=0.5, axis=-1)[source]#
Harrell-Davis robust estimate of the
quantile(s) of the data.Added in version 0.2.9.
- Parameters:
- xarray_like
Data, must be a one or two-dimensional vector.
- quantilefloat or array_like
Quantile or sequence of quantiles to compute, must be between 0 and 1. Default is
0.5
.- axisint
Axis along which the MAD is computed. Default is the last axis (-1). Can be either 0, 1 or -1.
- Returns:
- yfloat or array_like
The estimated quantile(s). If
quantile
is a single quantile, will return a float, otherwise will compute each quantile separately and returns an array of floats.
See also
Notes
The Harrell-Davis method [1] estimates the
quantile by a linear combination of the order statistics. Results have been tested against a Matlab implementation [2]. Note that this method is also used to measure the confidence intervals of the difference between quantiles of two groups, as implemented in the shift function [3].References
[1]Frank E. Harrell, C. E. Davis, A new distribution-free quantile estimator, Biometrika, Volume 69, Issue 3, December 1982, Pages 635–640, https://doi.org/10.1093/biomet/69.3.635
[3]Rousselet, G. A., Pernet, C. R. and Wilcox, R. R. (2017). Beyond differences in means: robust graphical methods to compare two groups in neuroscience. Eur J Neurosci, 46: 1738-1748. https://doi.org/doi:10.1111/ejn.13610
Examples
Estimate the 0.5 quantile (i.e median) of 100 observation picked from a normal distribution with zero mean and unit variance.
>>> import numpy as np >>> import pingouin as pg >>> np.random.seed(123) >>> x = np.random.normal(0, 1, 100) >>> round(pg.harrelldavis(x, quantile=0.5), 4) -0.0499
Several quantiles at once
>>> pg.harrelldavis(x, quantile=[0.25, 0.5, 0.75]) array([-0.84133224, -0.04991657, 0.95897233])
On the last axis of a 2D vector (default)
>>> np.random.seed(123) >>> x = np.random.normal(0, 1, (10, 100)) >>> pg.harrelldavis(x, quantile=[0.25, 0.5, 0.75]) array([[-0.84133224, -0.52346777, -0.81801193, -0.74611216, -0.64928321, -0.48565262, -0.64332799, -0.8178394 , -0.70058282, -0.73088088], [-0.04991657, 0.02932655, -0.08905073, -0.1860034 , 0.06970415, 0.15129817, 0.00430958, -0.13784786, -0.08648077, -0.14407123], [ 0.95897233, 0.49543002, 0.57712236, 0.48620599, 0.85899005, 0.7903462 , 0.76558585, 0.62528436, 0.60421847, 0.52620286]])
On the first axis
>>> pg.harrelldavis(x, quantile=[0.5], axis=0).shape (100,)